
+-------------------+
| CRYPTO CHUNK |
+-------------------+

Welcome to this sample project!

The goal of this project was to test some ways to store a bunch of
information directly on the blockchain instead of using a p2p storage.

Observations: By using a mapping(blockLocation => BlockColor) it is
easy to store all the information. The problem with this storage
method, there is no way to extract all the modified blocks in a single
shot without using a loop or making multiple calls to a get method.

To solve this problem, the information could be stored in a single
string and when the user requests the chunk information, it would come
as a single string of data and then split in blocks on the off chain
part. The problem with the second method is how would we remove a block
from the middle of the string without having to iterate over and/or
rewrite the whole thing.

The conclusion is: It is probably possible to store the information of
a game map on the chain but it would need a way faster method to
extract the information.

 -- How to start and test --
1 - start by connecting to metamask on the Bsc Testnet
2 - click load chunk to see the blocks
3 - Add some blocks to the chunk
4 - Once a few blocks have been placed, click save progress to send the
changes to the blockchain
5 - To start over click reset chunk

made by Frederic Cote https://github.com/FredCoteMtl

pragma solidity ̂0.4.8;

contract SimpleStorage {
 uint chunkSize;
 mapping(uint => bytes) locList;
 mapping(bytes => bytes) blocksCol;

 constructor() public {
 chunkSize = 0;
 }

 function set(bytes loc, bytes col) public {
 chunkSize = chunkSize + 1;

https://github.com/FredCoteMtl

 locList[chunkSize] = loc;
 blocksCol[loc] = col;
 }

 function setProgress(uint size, bytes locs, bytes cols) public {
 uint j = 0;
 for(uint i=0; i<size*2; i=i+2){
 set(

abi.encodePacked(locs[i], locs[i+1]),
abi.encodePacked(cols[j], cols[j+1], cols[j+2])

);
 j = j + 3;

 }
 }

 function getChunkSize() public view returns (uint) {
 return chunkSize;
 }

 function getColWithIndex(uint i) public view returns (bytes) {
 bytes storage loc = locList[i];
 return blocksCol[loc];
 }
 function getColWithLoc(bytes loc) public view returns (bytes) {
 return blocksCol[loc];
 }

 function getLoc(uint i) public view returns (bytes) {
 return locList[i];
 }

 function resetChunk() public {
 chunkSize = 0;
 }
}

