Welcome to this sample project!

The goal of this project was to test some ways to store a bunch of
information directly on the blockchain instead of using a p2p storage.

Observations: By using a mapping(blockLocation => BlockColor) it is
easy to store all the information. The problem with this storage
method, there is no way to extract all the modified blocks in a single
shot without using a loop or making multiple calls to a get method.

To solve this problem, the information could be stored in a single
string and when the user requests the chunk information, it would come
as a single string of data and then split in blocks on the off chain
part. The problem with the second method is how would we remove a block
from the middle of the string without having to iterate over and/or
rewrite the whole thing.

The conclusion is: It is probably possible to store the information of
a game map on the chain but it would need a way faster method to
extract the information.

-- How to start and test --
- start by connecting to metamask on the Bsc Testnet
- click load chunk to see the blocks
- Add some blocks to the chunk
- Once a few blocks have been placed, click save progress to send the
changes to the blockchain

Sw NP

5 - To start over click reset chunk

made by Frederic Cote https://github.com/FredCoteMtl

pragma solidity 70.4.8;

contract SimpleStorage {
uint chunkSize;
mapping (uint => bytes) locList;
mapping (bytes => bytes) blocksCol;

constructor () public {

chunkSize = 0;

function set (bytes loc, bytes col) public {
chunkSize = chunkSize + 1;


https://github.com/FredCoteMtl

locList [chunkSize] = loc;
blocksCol[loc] = col;

function setProgress(uint size, bytes locs, bytes cols) public {
uint j = 0;
for (uint 1i=0; i<size*2; 1=1+2){
set (
abi.encodePacked (locs[i], locs[i+1]),
abi.encodePacked (cols[j], cols[j+1], cols[j+2])

function getChunkSize () public view returns (uint) {
return chunkSize;

function getColWithIndex (uint i) public view returns (bytes) {
bytes storage loc = locList[i];
return blocksCol[loc];

}

function getColWithLoc (bytes loc) public view returns (bytes) {
return blocksCol[loc];

function getLoc (uint 1) public view returns (bytes) {
return locList[i];

function resetChunk () public {
chunkSize = 0;



